编程

Java 中的 Semaphore

725 2024-06-25 12:37:00

1.概述

本文中,我们将探讨 Java 中信号量(semphore)和 mutex 的基础。

2. Semaphore

我们将从 java.util.concurrent.Semaphore 开始。我们可以使用信号量(semaphore)来限制访问特定资源的并发线程的数量。

在以下示例中,我们将实现一个简单的登录队列来限制系统中的用户数量:

class LoginQueueUsingSemaphore {

    private Semaphore semaphore;

    public LoginQueueUsingSemaphore(int slotLimit) {
        semaphore = new Semaphore(slotLimit);
    }

    boolean tryLogin() {
        return semaphore.tryAcquire();
    }

    void logout() {
        semaphore.release();
    }

    int availableSlots() {
        return semaphore.availablePermits();
    }

}

请注意,我们是如何使用下面方法的:

  • tryAcquire() – 如果许可立即可用,则返回 true,否则返回 false,但 acquire() 获取许可并阻塞直到许可可用。
  • release() – 释放许可
  • availablePermits()返回当前可用许可的数量

为了测试我们的登录队列,我们将首先尝试使之达到限制,并检查下一次登录尝试是否会被阻塞:

@Test
public void givenLoginQueue_whenReachLimit_thenBlocked() {
    int slots = 10;
    ExecutorService executorService = Executors.newFixedThreadPool(slots);
    LoginQueueUsingSemaphore loginQueue = new LoginQueueUsingSemaphore(slots);
    IntStream.range(0, slots)
      .forEach(user -> executorService.execute(loginQueue::tryLogin));
    executorService.shutdown();

    assertEquals(0, loginQueue.availableSlots());
    assertFalse(loginQueue.tryLogin());
}

接下来,我们将查看退出登录后是否有可用的插槽:

@Test
public void givenLoginQueue_whenLogout_thenSlotsAvailable() {
    int slots = 10;
    ExecutorService executorService = Executors.newFixedThreadPool(slots);
    LoginQueueUsingSemaphore loginQueue = new LoginQueueUsingSemaphore(slots);
    IntStream.range(0, slots)
      .forEach(user -> executorService.execute(loginQueue::tryLogin));
    executorService.shutdown();
    assertEquals(0, loginQueue.availableSlots());
    loginQueue.logout();

    assertTrue(loginQueue.availableSlots() > 0);
    assertTrue(loginQueue.tryLogin());
}

3. 限时 Semaphore

接下来,我们将讨论 Apache Commons TimedSemaphoreTimedSemaphor e允许将多个许可作为一个简单的信号量,但该信号量在给定的时间段内有效,在该时间段之后,时间重置和所有许可都会被释放。

我们可以使用 TimedSemaphore 来构建一个简单的延迟队列,如下所示:

class DelayQueueUsingTimedSemaphore {

    private TimedSemaphore semaphore;

    DelayQueueUsingTimedSemaphore(long period, int slotLimit) {
        semaphore = new TimedSemaphore(period, TimeUnit.SECONDS, slotLimit);
    }

    boolean tryAdd() {
        return semaphore.tryAcquire();
    }

    int availableSlots() {
        return semaphore.getAvailablePermits();
    }

}

当我们使用一秒钟为时间周期的延迟队列时,一秒钟内使用所有插槽后,应该没有可用的插槽:

public void givenDelayQueue_whenReachLimit_thenBlocked() {
    int slots = 50;
    ExecutorService executorService = Executors.newFixedThreadPool(slots);
    DelayQueueUsingTimedSemaphore delayQueue 
      = new DelayQueueUsingTimedSemaphore(1, slots);
    
    IntStream.range(0, slots)
      .forEach(user -> executorService.execute(delayQueue::tryAdd));
    executorService.shutdown();

    assertEquals(0, delayQueue.availableSlots());
    assertFalse(delayQueue.tryAdd());
}

不过在休眠一段时间后,semaphore 应该重置并释放许可:

@Test
public void givenDelayQueue_whenTimePass_thenSlotsAvailable() throws InterruptedException {
    int slots = 50;
    ExecutorService executorService = Executors.newFixedThreadPool(slots);
    DelayQueueUsingTimedSemaphore delayQueue = new DelayQueueUsingTimedSemaphore(1, slots);
    IntStream.range(0, slots)
      .forEach(user -> executorService.execute(delayQueue::tryAdd));
    executorService.shutdown();

    assertEquals(0, delayQueue.availableSlots());
    Thread.sleep(1000);
    assertTrue(delayQueue.availableSlots() > 0);
    assertTrue(delayQueue.tryAdd());
}

4. Semaphore vs. Mutex

Mutex 作用类似于二进制信号量,我们可以使用它来实现互斥。

在下面的例子中,我们将使用一个简单的二进制信号量(semaphore)来构建一个计数器(counter):

class CounterUsingMutex {

    private Semaphore mutex;
    private int count;

    CounterUsingMutex() {
        mutex = new Semaphore(1);
        count = 0;
    }

    void increase() throws InterruptedException {
        mutex.acquire();
        this.count = this.count + 1;
        Thread.sleep(1000);
        mutex.release();

    }

    int getCount() {
        return this.count;
    }

    boolean hasQueuedThreads() {
        return mutex.hasQueuedThreads();
    }
}

当许多线程试图同时访问计数器时,它们只会被阻塞在队列中

@Test
public void whenMutexAndMultipleThreads_thenBlocked()
 throws InterruptedException {
    int count = 5;
    ExecutorService executorService
     = Executors.newFixedThreadPool(count);
    CounterUsingMutex counter = new CounterUsingMutex();
    IntStream.range(0, count)
      .forEach(user -> executorService.execute(() -> {
          try {
              counter.increase();
          } catch (InterruptedException e) {
              e.printStackTrace();
          }
      }));
    executorService.shutdown();

    assertTrue(counter.hasQueuedThreads());
}

当我们等待时,所有线程都将访问计数器,队列中没有剩余线程:

@Test
public void givenMutexAndMultipleThreads_ThenDelay_thenCorrectCount()
 throws InterruptedException {
    int count = 5;
    ExecutorService executorService
     = Executors.newFixedThreadPool(count);
    CounterUsingMutex counter = new CounterUsingMutex();
    IntStream.range(0, count)
      .forEach(user -> executorService.execute(() -> {
          try {
              counter.increase();
          } catch (InterruptedException e) {
              e.printStackTrace();
          }
      }));
    executorService.shutdown();

    assertTrue(counter.hasQueuedThreads());
    Thread.sleep(5000);
    assertFalse(counter.hasQueuedThreads());
    assertEquals(count, counter.getCount());
}

5. 结论

本文中,我们探讨了 Java 中 semaphore 的基础。